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A generalization of the Implicit Continuous-Fluid Eulerian (ICE) technique has been 
developed for the calculation of fluid flows in the presence of rapid exothermic chemical 
reactions typical of combustion environments. Systematic errors occur in the conventional 
operator splitting solution technique for the case of exothermic chemically reactive flows. 
These errors are the result of a biasing in the order in which the ICE and its derivative 
techniques solve the relevant conservation equations. Exothermic chemical reactions and 
thermal energy transport play important roles in determining the time-advanced pressure 
in the implicit treatment of the hydrodynamics for combustion environments, and the 
ICE models do not properly include these effects. The generalized ICE method presented 
corrects these systematic errors by properly coupling all of the operators which can have 
significant effects on the fluid pressure. The conventional solution method and the generalized 
method are each applied to a sample problem in order to illustrate the differences in the 
models. 

There has been a great deal of progress in recent years in the development of 
implicit methods for the solution of problems in fluid dynamics. Much of this work 
has been reviewed by Harlow [l]. Many of the implicit methods in use have been 
based to some degree on what was named the ICE (Implicit Continuous-Fluid 
Eulerian) method of Harlow and Amsden [2]. In the original ICE method, the 
continuity and momentum equations are coupled together and solved simultaneously, 
using the equation of state to relate the time-advanced pressure to the time-advanced 
fluid density. After those equations are solved, the energy conservation equation is 
solved explicitly in time, decoupled from the continuity and momentum equations. 

The ICE method has proved to be an exceedingly versatile and useful basis upon 
which to build numerical models for a variety of physical applications. The RICE 
program [3] added operators, also decoupled from the continuity and momentum 
equations, to account for chemical kinetics rate equations and transport of chemical 
species. Another very important related development was the addition of the Arbitrary- 
Lagrangian-Eulerian (ALE) technique of Hirt et al. [4,5] to permit use of the ICE 
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method in extremely general finite difference meshes. The combined ICED-ALE 
programs still use the same operator splitting method of the ICE technique for the 
continuity and momentum equations. Pracht [6] has extended the ICED-ALE model 
to three dimensions. Harlow and Amsden [7] incorporated a multifluid model into 
the ICED-ALE framework for multiphase calculations. Gal-Chen and Somerville [8] 
included surface topography for atmospheric flows. Sanford and Anderson [9], and 
Sanford et al. [lo] have coupled an implicit Monte Carlo radiation transport model 
to the ICE and ICED-ALE models. Brackbill and Pracht [1 I] used ICED-ALE as 
the basis for MHD calculations, including both the fluid and magnetic pressure in the 
fluid how calculations. In recent applications there appears to be some concern that 
the energy equation can have an important impact on pressure variations over the 
hydrodynamic time step. In modeling low Mach-number, homogeneous two-phase 
flows, Ramshaw and Trapp 1121 coupled the energy equation to the continuity and 
momentum equations, but the energy equation was solved explicitly in time and there 
was no iteration to correct the effects of energy transport on the time-advanced 
pressure. 

In all of the above models, the basic solution strategy is patterned after that of the 
ICE method, in which the time-advanced pressure and density are related through an 
equation of state. The energy equation is not solved simultaneously and implicitly 
with the continuity and momentum equations. These treatments therefore assume 
that changes in the fluid pressure in each computational cell are due primarily to 
density changes and that pressure changes due to changes in internal energy, tempera- 
ture, or other physical processes are relatively small. This situation prevails in a large 
number of applications for which the ICE method was designed or modified, including 
problems in which energy diffusion rates and energy deposition rates are small. If the 
change in internal energy is small, then the final correction to the pressure from the 
solution of the energy equation is also small; the pressure which was used in the solu- 
tion of the hydrodynamics equations was in fact a good estimate of the true time- 
advanced pressure. 

However, this assumption in the ICE method is not always valid. Situations arise 
where the internal energy density can change as a result of rapid energy deposition in 
the fluid. In some cases the ICE method can be adjusted appropriately to deal with 
this problem. As noted, Ramshaw and Trapp [12] used the energy equation, solved 
explicitly in time, to estimate the change in pressure over the time step due to energy 
exchanges in two-phase flows. O’Rourke and Bracco [ 131 have used the rate of chemical 
reaction energy deposition, again evaluated explicitly in time, to help estimate the 
pressure changes in applications of the RICE program to combustion problems. 

In most combustion problems the calculation of the fluid dynamics properties of 
the reacting fluid is complicated by the fact that rapid exothermic chemical reactions 
are taking place in portions of the combustion chamber. Since the mass and momentum 
flux terms in an implicit formulation depend on having an accurate estimate of the 
time-advanced pressure, it is essential to include in the implicit, coupled fluid dynamics 
equations all of the effects and operators which could significantly affect that pressure. 
The ICE family of programs is being used increasingly in combustion modeling 
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programs [13-l 71 and it is important to examine the suitability of the method to these 
applications. We find that use of the ICE technique can result in systematic errors in 
many combustion calculations. The ICE method, however, is very attractive as a 
general outline. The purpose of this paper is to describe a generalization of the ICE 
method which avoids these systematic errors and to demonstrate its use in a typical 
combustion application. Finally, some guidelines are presented, indicating in what 
circumstances the ICE method may be used without modification, in any class of 
applications. 

MODEL DEVELOPMENT 

The equations for conservation of mass, momentum, and energy are exactly the 
same as in the original ICE formulation [2]. In order to keep the description simple 
we illustrate this discussion with the one-dimensional equations. The generalization 
to two and three dimensions will be obvious. These equations are 

where 

(3) 

and 
E = I + d/2. (5) 

The above terms are discussed in Ref. [2], and the spatial and time centering conven- 
tions from [2] also apply. In the ICE and related methods, the continuity and momen- 
tum equations, the difference equation analogs of Eqs. (1) and (2), are solved simul- 
taneously. The equation of state is used to relate the time-advanced pressure P and the 
time-advanced density pn+l, 

where 

P = P” + cn(pn+l - p”), (6) 

in = (aP/app, (7) 

to arrive at the equation to be solved for H. In one dimension, this equation is 

Pi/Gin = [8#(At)2/(d~)2J(Pi-l + Pi+1 - 2Fi) + Gi , (8) 
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in which Gi involves only terms available at the beginning of the time step. The 
commonly used expression for pressure in most combustion applications is the 
multispecies ideal gas equation of state 

(9) 

in which R is the gas constant, Al is the molecular weight of chemical species 1, Y, is 
the mass fraction (pi/p) of species 1, and Tis the temperature. If we expand the pressure 
about the values at the previous time t”, we have 

zz pll + 
i 1 
$ n (/pi1 _ p”) + (g)” (z-1 - 7”) 

+ i (gj’” vl”” - YL’“). 

Note that the expression used in the ICE method, Eq. (6), includes only the first two 
terms on the right-hand side of Eq. (10). In the ICE program the pressure changes 
due to changes in temperature (or internal energy) are not included in the solution 
of Eq. (8). Since they are assumed to be small changes, the pressure variations due 
to internal energy are accounted for subsequent to the explicit solution of the energy 
equation. In the RlCE code [3], in which chemical species transport equations and 
chemical kinetics equations are included, the last term on the right-hand side of 
Eq. (10) is also assumed to be small, and changes in pressure due to changes in 
composition are added explicitly after all other corrections to the pressure have 
been made. 

The principle behind the ICE method is that the best possible estimate for the 
time-advanced pressure must be used in the momentum equation, Eq. (2). Therefore, 
all of the physical processes which can significantly affect that pressure must be 
coupled to the solution of the continuity and momentum equations. In combustion 
problems this requires that the energy equation and the species kinetics and transport 
equations be solved together with the continuity and momentum equations, rather 
than be solved subsequently as is done in the RlCE code. 

We begin the present formulation by estimating the time-advanced pressure, 
including the effects of the energy and chemical species conservation equations. The 
overall system of equations is nonlinear, and we will adopt an iterative solution 
method. We define an iteration index m such that p” is the mth iterative approximation 
to pR+l, and similarly for all other variables. For the first approximation when m = 1 
we use values at the previous time step tn. The time-advanced pressure is then expanded 
about the previous iterate, giving 

p = pm + (2$)” (pm+1 - p”) + (#“” (7-mQ - T”“) 

+ g1 (S)” (ylm+l - YLrn>. (11) 



GENERALIZED ICE METHOD 71 

For m = 1 this is identical to Eq. (10). A higher-order Taylor series expansion for P 
might be used instead of Eq. (11) in order to account for the possibility of very strong 
coupling between changes in temperature and species concentrations and to improve 
the convergence of the iteration scheme. In practice the linearized Taylor series 
expansion is adequate for the applications which were studied. If the iteration scheme 
does not converge, the time step is reduced and that cycle is recomputed, but this 
procedure was rarely necessary for the combustion applications discussed below. 
Using values for all of the variables at the mth iterate, the energy equation and the 
chemical species equations, including kinetics, are solved for T*+l and Yy+‘. We then 
define H.“” as t 

Him = Gi + (G)“’ “‘;:,; Tm) + -$ gl (+$ (Yl”” - Y,l”). (12) 

The equation to solve for P has now become 

Formally this equation is identical to Eq. (8), which is solved by the ICE family of 
programs except that the constant vector Gi has been replaced by Him, which is held 
constant while Eq. (13) is solved. The same similarity holds for the two-dimensional 
case, so that the methods used by any ICE-related program could still be used, with 
the substitution of Hi” for Gi . In the generalized method, just as in the ICE model, 
once P is known, p*+l and (pu) lnfl may be calculated immediately. An important 
improvement in the new formulation, however, is the fact that these new values for 
pm+l and @~)~+l include the simultaneous effects of all of the physical processes which 
can affect the pressure and the fluid flow properties. Finally, the pressure Pm+l is 

chemical species 

FIG. 1. Logical flowchart for solution of conservation equations using the generalized ICE 
model, showing the convergence test and iteration path. 
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computed and compared with Pm, the approximation at the previous iterate. Conver- 
gence is achieved when the corrections between one iteration and the next fall below 
some specified level. If convergence has not been reached, the latest iterative solutions 
are used to again solve the energy and chemical species equations and another 
iteration is computed. The overall structure of the iteration cycle is presented schema- 
tically in Fig. 1. The difference between this approach and that of ICE/RICE lies in 
the fact that we have included the effects of the energy equation and the chemical 
species equations inside the iteration loop, rather than solving them after the hydro- 
dynamic equations have been solved. 

EXAMPLE 

To illustrate the properties of the generalized ICE method, a rather simple com- 
bustion problem was calculated using two different models. In one calculation the 
conventional operator splitting technique in the RICE program [3] was used, and in 
the other calculation the present generalized, coupled model was used. Both problems 
used identical initial conditions, chemical kinetic data, and transport coefficients. In 
this one-dimensional example, a combustion chamber having a linear dimension of 
10 cm is filled initially with a stoichiometric mixture of fuel and oxidizer, which is 
assumed to have been compressed adiabatically to a density 10 times atmospheric 
density, so that the initial temperature of the gas is > 750 K and the pressure is 
25 atm. The combustion is represented by a single-step exothermic chemical reaction. 
Initially the temperature, density, composition, and pressure are all spatially uniform. 
The mixture is ignited at one side of the chamber, and a turbulent planar deflagration 
wave moves across the chamber, consuming the reactant species and releasing energy. 
The turbulent Lewis number of each of the chemical species is set equal to unity, so 
that energy and species diffusion are assumed to be controlled by the diffusion of 
turbulent eddies. In these examples the turbulent diffusivity p/p was set equal to a 
constant value of 500 cm2/sec. Typical zone widths were 0.1 cm. Estimates of the 
magnitude of numerical diffusion were made by varying the zone widths and repeating 
the calculation. Changing the zone width by a factor of 2 produced a change of less 
than 5 % in computed results, leading to a conclusion that the numerical diffusion rate 
is substantially smaller than the physical diffusion rate in these problems. We can 
follow the progress of the flame front in Fig. 2, in which the temperature distribution 
and specific reaction rate are plotted as functions of position at two different times. 
The steep temperature rise in the flame region is spread over approximately four zones. 
The flame propagates because heat generated by the exothermic reaction is transported 
into the unburned region ahead of the flame, raising its temperature. The transport 
coefficients and the single reaction rate (k = 1.1 x 1013 e--30*000/RT cm3/mole-set) 
were taken from Ref. [18]. Because of the relatively high activation energy in the 
reaction rate expression, the reactants will not burn until the temperature has reached 
a value of approximately 1500 K. The narrow reaction rate curves in Fig. 2 show that 
once the gas reaches that temperature the combustion is very rapid. Since the com- 
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bustion chamber has a fixed volume and is assumed to be thermally insulated, the 
chamber pressure will rise as energy is released by reactions. During the time interval 
between the pairs of curves in Fig. 2, the average chamber pressure has increased 
from 35 to 50 atm. Even though the reaction rates in Fig. 2 are somewhat localized 
in space at each time, the sound speed in the gas is high enough that the pressure 
throughout the chamber is nearly uniform. These general features of the flame 
structure and propagation are reproduced by both models. In Fig. 3 we plot the 

y 1600 - y 1600 - 
0 0 P = 50 atm P = 50 atm --------_--_ --------_--_ 

-0 2 4 6 8 IO 

Distance, cm 

FIG. 2. Motion of flame front, showing temperature (T), pressure (P), and specific reaction rate 
(R). Solid lines indicate conditions at t = 0.75 msec, and dashed lines indicate conditions at 1.25 msec. 

1 I I I I 
0 1 2 

Time, millisecondr 

FIG. 3. Position of the flame front with time. Solid curve represents the generalized model 
results, and the dashed curve represents results using the conventional RICE operator splitting 
method. 
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position of the flame front as a function of time for both problems, with the ICE/RICE 
results indicated by the dotted curve, and the generalized model results indicated by the 
solid curve. The flame speeds are both typical of turbulent flames in closed, highly 
compressed combustion chambers. The curvature in the plots of flame position shows 
that the flame speed increases as the flame moves across the chamber. This acceleration 
is due to the fact that the flame compresses the unreacted gas ahead of the flame front 
and propagates into an increasingly dense medium. Since the reaction rate depends on 
the square of the density, the reaction rate steadily rises and accelerates the flame. It 
can be seen at once that the operator-split ICE/RICE model predicts a significantly 
higher propagation velocity for the flame than does the other model. An important 
result of this difference in flame speed is illustrated by Fig. 4 in which the total pressure 
is plotted for each model calculation as a function of time. Prediction of the pressure- 
time history of a combustion system is often the most important task of a numerical 
model, so the differences in behavior between the two models must be examined. 

I I I 
0.5 1.0 1.5 2.0 

Time, milliseconds 

FIG. 4. Average combustion chamber pressure using the generalized model (solid curve) and the 
RICE splitting method (dashed curve). 

From Eq. (10) we can write 

AP Ap -=- 
p P 

where 
A)’ = pn+l - f’n 

AT = p-t1 - p 

Ap = pn+l - p”, 

A Y, = y;+l - Yt”. 

(14) 
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For a typical time step, we can plot each of the terms in Eq. (14) as functions of 
position in the combustion chamber. These curves, shown in Fig. 5, point out some 
important facets of deflagration waves. The last term in Eq. (14) is identically zero 
in these sample problems because of the single-step kinetics model. In calculations 
using a detailed chemical kinetics mechanism for methane oxidation [19], with 
20 chemical species and 54 reactions, this term was also found to be negligible in 

1.0 

-0.5 

-1.0 ) I I I I 

0 2 4 6 8 10 
Distance, cm 

FIG. 5. Fractional changes in pressure (U/P), density (Ap/h), and temperature (AT/T). 

comparison with the other terms in Eq. (14). Thus the primary effect which the 
chemical species kinetics and transport operators have upon the time advanced 
pressure is in releasing energy through chemical reactions and by transporting energy 
by diffusion, and not through changing the average molecular weight of the fluid 
and affecting the last term in Eq. (14). For the remaining terms, behind the flame in 
the product gases, and well ahead of the flame in the cold, unreacted region, we see 
that 

ApJp > AT/T. (15) 

In such regions the majority of the pressure variation is a result of density variation. 
We would expect the ICE/RICE method to give a good estimate of P in those regions. 
Those regions are also characterized by the fact that the reaction rate and the energy 
deposition rate are both very small. However, in the reaction zone, where the energy 
release rate is large, 

A p/p < AT/T. (16) 

In fact, Fig. 5 shows that there are regions where Ap/p < 0, although AP/P > 0. One 
would expect the ICE/RICE method to have problems in these regions, since in these 
exothermic zones the ICE estimate of the pressure is a poor one. 
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It is interesting to see how the ICE method behaves in this flame region over a 
single time step. The zone pressures for several grid points ahead of and behind the 
flame are given in Table I. The first column gives Pn; the next column gives the pressure 
P used by the hydrodynamics subroutine; the third column gives the pressure follow- 
ing the chemical species transport; the next column gives the pressure after the 
chemical kinetics equations are advanced; the last column gives the final zone pressures 
Pnil, following the solution of the energy equation. The temperature PC1 is also 

TABLE I 

Summary of the Pressure Variations during a Single Time Step for a 
Flame Propagation Calculation Using the ICE/RICE 

Operator Splitting Scheme” 

ZOIX 

5 

6 

8 

9 

10 

11 

12 

13 

14 

15 

P" 

35.767 36.327 36.327 36.661 36.475 

35.782 36.129 36.128 36.766 36.387 

35.939 35.948 35.947 37.195 36.430 

36.408 35.793 35.771 37.642 36.684 

36.155 35.577 35.593 36.386 36.872 

35.692 35.289 35.289 35.457 36.159 

35.096 34.919 34.920 34.956 35.569 

34.522 34.490 34.490 34.500 34.937 

34.013 34.043 34.043 34.046 34.345 

33.543 33.602 33.603 33.604 33.813 

33.122 33.188 33.188 33.189 33.336 

p+, T”fl 

2777 

2639 

2420 

1631 

1312 

1117 

994 

916 

864 

829 

a Zones 5-l have already burned, zones 8-12 are in the flame region, 
and zones 13-15 are not yet reacting. 

included for comparison, to locate the flame region. Several important points may 
be made. First, the pressure is not truly uniform throughout the combustion chamber. 
Sound waves generated by the ignition process and by other physical and numerical 
properties of the flame propagation travel back and forth throughout the chamber. 
As a result the pressure at each grid point varies slightly about the average chamber 
pressure, which increases with time. Second, it is clear that P is not a good estimate 
of Pn+l in the flame region. The largest change in pressure is due to the exothermic 
reaction, which rapidly raises the temperature and pressure in the flame. Also note 
that in the flame region (zones 8-12) even the sign of the pressure change (P - P") is 
not correct. Although the pressure in the flame region is increasing with time, the 
ICE hydrodynamics subroutine is misled into predicting a lower pressure in the flame. 
As a result of this erroneously lower pressure in the flame zone, an excessive mass 
flux from the hot burned gas region into the flame region and then into the unreacted 
gas region is computed. And even though subsequent operators for the chemical 
reactions and the energy equation approximately restore the pressure gradient, the 
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erroneous mass flux is not corrected. The net result of this process is an overestimate 
of the energy transport due to convection into the flame region and into the unburned 
gas ahead of the flame. Thus the decoupling of the operators in the original ICE/RICE 
model introduces a biasing into the problem solution. By overestimating the net mass 
flux and heat flux ahead of the flame, the decoupled model predicts a propagation 
velocity for the flame which is too high. 

Inclusion of the pressure changes due to heat release from chemical reactions in the 
new, generalized model serves two major purposes. Most important, the pressure 
used to compute the mass flux is always a good estimate of the actual time-advanced 
pressure. This eliminates systematic errors which have been seen to occur when the 
decoupled operator technique is used. Also, pressure oscillations during the course of 
a single time step, produced by the order in which the equations are solved in ICE/ 
RICE, have been eliminated by the present coupled solution technique. 

The rate of increase in the temperature in the flame region has been shown to play 
the key role in the systematic bias resulting from the ICE/RICE splitting scheme. 
In order to confirm this analysis, a second pair of calculations was made in which the 
reaction was 20 % less exothermic than the first pair of calculations. The flame front 
positions for the RICE splitting scheme and the present model are shown in Fig. 6, 

0 1 2 
Time, milliseconds 

Fro. 6. Position of the flame front with time for the 20% less exothermic model.~Solid curve 
represents the generalized model results, and the dashed curve represents the RICE splitting method 
results. 

and the overall results are compared in Table II. We see that the relative error 
between the RICE method and the present model decreases with decreasing reaction 
exothermicity. In the limit of very small exothermicity the two methods would give 
the same results. Furthermore, the dependence on relative exothermicity confirms 
the mechanism by which systematic biasing affects the calculations performed using 
the ICE/RICE splitting scheme. 
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In both splitting schemes the time steps being used are nearly the same, about a 
factor of 10 larger than the Courant time step. Here the maximum time step is being 
controlled by accuracy considerations in the solution of the chemical kinetics equa- 
tions. This type of time step limitation is very common in these combustion calcula- 
tions. It is quite rare to find time step limitations resulting from the solution of the 
hydrodynamic equations, in either the ICE/RICE scheme or the present model. One 

TABLE II 

Comparison between RICE and the Present 
Generalized Model, Showing the Effects of 

Reaction ExothermicityD 

Exothermicity Present Relative 
(kcaltmole) RICE model error 1%) 

100 1.22 1.50 19 

80 1.88 2.15 13 

D The values in the columns labeled “RICE” 
and “Present model” are the times, in milli- 
seconds, for the flame to propagate across the 
lo-cm combustion chamber. 

might expect that the generalized model would exhibit enhanced stability character- 
istics and be able to run with larger time steps. But since chemical reaction time 
scales are almost invariably much shorter than the time steps allowed by either of the 
splitting schemes, this particular benefit of the generalized scheme is rarely realized. 
The major claim that is made for the generalized model is that the systematic biasing 
inherent in the ICE splitting scheme is avoided, at a very modest increase in computa- 
tion time required. The generalized scheme requires 5-10 % more computer time 
for the entire problem, with all of this time resulting from the higher number of times 
which the energy equation and chemical species equations must be solved, due to 
additional iterations. The average number of these iterations is usually less than five, 
and the maximum number of iterations commonly encountered during the course of 
an entire problem is between 15 and 20 iterations. 

CONCLUSION 

The above generalization of the ICE method is intended to account for pressure 
dependence on other quantities in addition to density variations. The need for such a 
coupled treatment was originally motivated by observing the pressure variations at 
each grid point over a single time step which resulted from the ICE/RICE operator 
splitting scheme. It was subsequently discovered that systematic errors occurred in 
the ICE/RICE model for problems with significant energy deposition rates from 
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exothermic chemical reactions. Both the pressure fluctuations over each time step and 
the systematic errors are eliminated in the new formulation. Larger time steps have 
not been observed with the new formulation because other operators are controlling 
the maximum allowable time step. Therefore, the new model uses the same time step 
as the conventional ICE/RICE model and requires very little additional computation 
time. 

A general conclusion can be drawn from these results which may be useful in 
application areas beyond combustion problems. We have demonstrated that the ICE 
method should be used only in those situations in which the fluid pressure variations 
are due principally to density variations. In applications in which the pressure may 
change rapidly due to any other physical operator (e.g., exothermic chemical reactions, 
radiation energy deposition), it is not sufficient to split the pressure variation into a 
density-dependent part which is treated by ICE and another part which is treated 
subsequently. Such operators should be coupled inside the fluid dynamics formulation. 
If this is not done properly, systematic errors in the flow properties of the fluid will be 
produced as discussed above in the case of the planar deflagration wave. Finally, it 
should be reiterated that modification of most programs already using ICE/RICE 
and related techniques to the coupled form presented here should be quite simple in 
most cases. 
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